

AGROSTEMIN®

increases yield

of agricultural products from 5% to 15% (and more)

AGROSTEMIN®

improves the quality of agricultural products

AGROSTEMIN®

decreases expenses for fertilizers from 20% to 30%

HOW?

Increased germination viability – uniformed, faster **sprout**Longer and more ramified – more efficient **root**Stronger **plant**, with increased chlorophyll content

High quality **nutrition** (improved exchange of mineral and other substances)

Better **resistance0** to diseases, parasites and climatic extremes

AGROSTEMIN®

is not a fertilizer – is not a pesticide is not a phytohormon

AGROSTEMIN®

is a natural origin **NUTRITION** substance *)
which consist of plant species extracts

AGROSTEMIN®

completely **harmless** for humans, animals (including bees) and environment **)

AGROSTEMIN®

it does not require special safety measures of hygienic and technical protection **)

INFORMATION FOR USERS

There are many forgeries of **AGROSTEMIN®** present on the market, containing the similar (root of the word is "stemin") or the same name.

Depending on the producer, there are also different instructions for application (dosage, method and time for application).

Due to this fact, the company "AGROSTEMIN"-Beograd, the producer of **AGROSTEMIN**®, decided to put the signature of the author-creator of allelophatin Agrostemin – Dr Danica Gajic – on our packaging and, in such a way, to guarantee their quality and to provide the proof of originality of the product.

AGROSTEMIN[®] "with signature" has its own terms for application (dosage, method and time for application). We kindly ask the users for patience and to **read carefully**, before application, the following instruction.

INSTRUCTION FOR APPLICATION

(allowed to be used in certified organic farming)

AGROSTEMIN® is added whether to the seed, plants, or the soil, depending on the available mechanization, the type of agricultural product and the phase of its development in the moment of application.

<u>POWDER</u> (spraying) is applied during finishing phase/preparation of seed for sowing:

300 g \Rightarrow to the quantity of seed per ha

<u>WATER SOLUTION</u> (prepared as per the instruction on page 9) is distributed to number of sprinklers (chargings) necessary for spraying the culture or, under special conditions, in the finishing phase/preparation of seed for sowing:

dissolved 300 g ⇒ for spraying 1 ha of cultivated land

The information on <u>how many times</u> it should be sprayed, during one season (mandatory + recommended) is given in the **Table 1** stating 50 characteristic agricultural products.

The information on **how and when** to perform it is given separately for every culture stated on the respective page (**Table 1**– column "**Page**"). More exactly, this information contains the detailed instructions on the vegetative phase of development with the respective quantity of **AGROSTEMIN**® to be applied.

In the chapter "IMPORTANT!" (page no. 9) are given all the necessary information for obtaining the maximum increase of yield.

Every package contains a **measure** for quick and easy measurement of desired quantity of **AGROSTEMIN**[®]. Depending on the size of the package, these are as follows:

a glass for brandy $(V=0.05 \text{ l}) = \frac{1}{4} \text{ acre } (0.1 \text{ ha})$

half a bowl (V=0.50 l) = 1 hectare bowl (V=1.00 l) = 2 hectares

That means:

300 g of AGROSTEMIN[®] = 1 ha of cultivated land 10 glasses of AGROSTEMIN[®] = 1 ha of cultivated land 1/2 of bowl of AGROSTEMIN[®] = 1 ha of cultivated land

 $300g = 10 \text{ glasses} = \frac{1}{2} \text{ of bowl} = 1 \text{ ha of cultivated land}$

PRODUCER:

"Agrostemin" Ltd., Belgrade Kralja Milutina 26, Serbia

tel/fax: 381 (11) 268 26 64 mob: 381 (64) 147 80 08

e-mail: office@agrostemin.com www.agrostemin.com

^{*)} Decision no 321–01–02214/2019–11 dated 10/02/2020 Ministry of agriculture, forestry and water management of the Republic of Serbia

^{**)} Decision no.3/2–08–9291/02 dated 13/01/03 Federal Ministry of labor, healthcare and social welfare

dr. Danies Gajië

Table 1

						1			Table 1					
			Numb spray	er of ings					Numb spray	er of yings				
	Culture		mandatory	Increase			Culture		mandatory	recommended	Increase			
			(♥)	(♡)					(♥)	(♡)				
Α	apple	3	2	2	up to 3,000 kg/ha		pea	6	1	1	1,000–2,000 kg/ha			
^	apricot	3	2	1	up to 800 kg/ha		peach	6	2	1	up to 2,000 kg/ha			
	barley	3	2	1	up to 12 %	Р	pear	6	2	1	up to 3,000 kg/ha			
В	beet	3	2	1	1,500-3,000 kg/ha		plum	6	2	1	up to 1,200 kg/ha			
	blackberry	3	2	1	up to 1,000 kg/ha		potato	6	2	1	3,000-9,000 kg/ha			
	cabbage	3	2	1	3,000-6,000 kg/ha		radish	6	2	1	1,500-3,000 kg/ha			
	carrot	3	2	1	2,000-4,000 kg/ha	R	raspberry	6	2	1	up to 2,000 kg/ha			
	cauliflower	3	2	1	2,000-3,000 kg/ha	K	rice	6	2	1	400-600 kg/ha			
С	cherry	4	2	1	up to 800 kg/ha		rye	7	2	1	up to 15 %			
	common bean	4	1	1	100–300 kg/ha		salad	7	2	1	2,000–3,500 kg/ha			
	cucumber	4	2	2	9,000–11,000 kg/ha		savoy	7	2	1	1,800-2,500 kg/ha			
F	floriculture	4					sour sherry	7	2	1	up to 800 kg/ha			
G	garlic	4	2	1	400–1,000 kg/ha		soybean	7	2	1	200–500 kg/ha			
	grape (vine)	4	3	1	2,000-8,800 kg/ha		spinach	7	2	1	1,500–2,500 kg/ha			
K	kohlrabi	4	2	1	2,500-3,200 kg/ha	S	strawberry	7	2	1	up to 1,000 kg/ha			
L	lucerne	4	1	1	up to 20 %		string bean	7	1	1	500-1,000 kg/ha			
	maize	5	2	1	400-800 kg/ha		sugar beet	8	2	1	2,750-8,800 kg/ha			
М	meadow grass	5	1	1	up to 20 %		sugar cane	8						
IVI	medlar	5	2	1	up to 800 kg/ha		sunflower	8	2	1	200-300 kg/ha			
	melon	5	2	1	up to 15 %		swiss chard	8	2	1	1,600-2,800 kg/ha			
	oats	5	2	1	400-600 kg/ha	Т	tobacco	8	3	1	up to 20 %			
0	onion	5	2	1	2,000-3,000 kg/ha		tomato	8	2	1	10,000–15,000 kg/ha			
Р	paprika	5	2	1	2,000–3,500 kg/ha	w	watermelon	8	2	1	up to 15 %			
	parsley	5	2	1	700-1,200 kg/ha	VV	wheat	8	2	1	400-600 kg/ha			

APPLE

	HOW	⇔	WHEN	⇔	300 g/ha	Х	
I	spraying	spraying ⇔ in the phase of the sprouting leaf buds					
II	spraying	spraying ⇔ before blossoming					
III	spraying	g⇔ be	efore appea	arance	of the color	\Diamond	

- increased content of sugar and dried substance;
- more intense color of the culture;
- bigger quantity of first class fruits;
- more convenient for transport and storage;
- increased yield from 5% to 15%.

BARLEY

	HOW	⇔	WHEN	⇔	300 g/ha	X	
ı	powder spraying	or	ed efore initial	growth	(the soil)	•	
II	spraying ⇔ between tillering and stem elongation (jointing stage)						
Ш	spraying	y ⇔ si ot tic	multaneou her chemic ons (half of	sly with al prote the usu	application of ection prepara- ual dosage)	\Diamond	

- matures earlier;
- improved quality of kernel for processing in beer industry as well as the quality of fodder barley;
- increased yield from 5% to 12%.

BLACKBERRY

	ном	\Leftrightarrow	WHEN	⇔	300 g/ha	X
ı	spraying	sp mi pla	ring) and nutes the	subm nursery he solu	vegetation (in lerge for 30 plant before tion prepared ving	•
II	spraying	g ⇔ 3 t	o 7days u	oon trar	nsplantation	•
Ш	spraying		fore blosso thering	oming a	and after	\triangleright

- increased percentage of sugar;
- improved mechanical characteristics of the fruit;
- increased yield from 5% to 15%.

CARROT

	HOW	\Leftrightarrow	WHEN	⇔	300 g/ha	X	
I	powder spraying	or	ed fore or afte	er initial	growth	•	
II	spraying	oraying ⇔ 30 days after initial growth					
III	spraying	g ⇔ sir otl ra	multaneous ner chemic tions (half	sly with cal prot of the u	application of tection prepa- sual dosage	8	

- increased content of carotene
- more convenient for transport and storage;
- increased yield from 5% to 15%.

APRICOT

	HOW	⇔	WHEN	⇔	300 g/ha	Х	
I	spraying	g⇔in th	the phase e sprouting	of leaf b	uds	•	
П	spraying	raying ⇔ before blossoming					
III	spraying	g ⇔ be	efore appea	arance	of the color	\Diamond	

- increased content of sugar and dried substance;
- more intense color of the culture;
- bigger quantity of first class fruits;
- more convenient for transport and storage;
- increased yield from 5% to 15%.

BEET

	HOW	\Leftrightarrow	WHEN	⇔	300 g/ha	Х
I	powder spraying	or	ed fore or afte	er initial	growth	•
II	spraying	g ⇔ 30	days from	the ini	tial growth	•
III	spraying	oth	ner chemic	cal prote	application of ection prepara- ual dosage)	S

- increased content of dried substance;
- more convenient for transport and storage;
- increased yield from 5% to 15%.

CABBAGE

	HOW	⇔	WHEN	⇔	300 g/ha	Х
ı	powder spraying	or g⇔be		growth of 2–3	(the soil) or leaves	•
II	spraying	g ⇔ 3	to 7days u	pon trai	nsplantation	•
III	spraying	ot	her chemi	cal pro	application of tection prepa- sual dosage)	\triangleright

- increased content of dried substance ("harder");
- increased percentage of sugar;
- increased yield from 5% to 10%.

CAULIFLOWER

	HOW	⇔	WHEN	\Leftrightarrow	300 g/ha	X
ı	powde spraying	or g⇔be		growth of 2–3	(the soil) or leaves	•
II	spraying	g <code-block> 3 t</code-block>	to 7days u	pon tra	nsplantation	•
II		ot	her chemi	cal pro	application of tection prepa- usual dosage)	\Diamond

- increased content of sugar and dried substance;
- increased yield from 5% to 10%.

CHERRY

	HOW	⇔	WHEN	⇔	300 g/ha	Х		
ı	spraying	raying ⇔ before blossoming						
II	spraying	praying ⇔ after blossoming						
III	spraying	g ⇔ be	fore appea	arance	of the color	\Diamond		

- increased percentage of sugar;
- more intense color of the culture;
- bigger quantity of first class fruits
- more convenient for transport and storage;
- increased yield from 5% to 15%

CUCUMBER

	HOW	⇔	WHEN	⇔	300 g/ha	X
ı	powder spraying	or a⇔be		growth of 2–5	(the soil) or leaves	•
II	spraying	g ⇔ 3 t	to 7days u	pon trai	nsplantation	•
Ш	spraying	ot	her chemi	cal pro	application of tection prepa- isual dosage)	\otimes
IV	spraying	g ⇔ af	fter gatheri	ng		\Diamond

increased yield from 5% to 20%.

GARLIC

	ном	\Leftrightarrow	WHEN	\Leftrightarrow	300 g/ha	X	
I	powder spraying	or	ed efore or afte	er initial	growth	•	
II	spraying \Leftrightarrow 30 days after initial growth						
Ш	spraying	g ⇔ sii ot ra	multaneous her chemic tions (half	sly with cal prot of the u	application of tection prepa- sual dosage)	\triangleright	

- more convenient for transport and storage;
- increased yield from 5% to 10%.

KOHLRABI

	HOW	⇔	WHEN	\Leftrightarrow	300 g/ha	X	
ı		powder ⇔ seed or spraying ⇔ before initial growth (the soil) or in the phase of 2–3 leaves					
II	spraying	spraying ⇔ 3 to 7days upon transplantation					
Ш	spraying	otl	her chemi	cál prot	application of tection prepasual dosage)	\Diamond	

- increased content of sugar and dried substance;
- increased yield from 5% to 10%.

COMMON BEAN

	HOW	⇔	WHEN	⇔	300 g/ha	X
ı		or ·	wder or su fore or afte	·	e into solution I growth	>
II	spraying	g ⇔ sir otl ra	multaneous her chemic tions (half	sly with cal pro of the u	application of tection prepa- sual dosage)	₽

- more intense color of the culture;
- green plant mass increased for 20%;
- increased percentage of sugar;
- increased yield from 5% to 20%.

FLORICULTURE

GRAPE (vine)

	HOW	\Leftrightarrow	WHEN	\Leftrightarrow	450 g/ha	X
I	spraying	g ⇔ 1	0 days befo	re blos	soming	•
II	spraying	g ⇔ 1	0 days afte	r blosso	oming	*
Ш	spraying	g ⇔ 1 c	0 days befoolor on the	re apport	earance of grapes	•

- increased content of sugar, carotene and anthocyanins;
- more intense color of the culture;
- improved mechanical characteristics of acinus and bunch;
- more convenient for transport and storage;
- $-\$ increased yield from 5% to 15%.

LUCERNE

	HOW	⇔	WHEN	⇔	300 g/ha	X	
ı		powder ⇔ seed or spraying ⇔ before or after initial growth					
II	spraying	g⇔ af	ter swath			\Diamond	

- increased content of carotene and other salutary substances;
- increased yield from 5% to 20%.

MAIZE

	HOW	⇔	WHEN	⇔	300 g/ha	X	
I	powder ⇔ seed or spraying ⇔ before initial growth (the soil)						
II	spraying	g ⇔ in	the phase	of 4 to	5 leaves	•	
Ш	spraying	ot	her chemi	cal pro	application of tection prepa- sual dosage)	\Diamond	

- matures earlier;
- higher quality yield (increased content of raw proteins);
- increased yield from 5% to 15%.

MEDLAR

	HOW	⇔	WHEN	⇔	300 g/ha	Х	
ı	spraying ⇔ in the phase of sprouting leaf buds						
II	spraying	spraying ⇔ before blossoming					
III	spraying	g ⇔ be	fore appea	arance	of the color	\Diamond	

- increased content of dried substance;
- increased percentage of sugar;
- increased yield from 5% to 15%.

OATS

	HOW	⇔	WHEN	⇔	300 g/ha	X		
I		powder ⇔ seed or spraying ⇔ before initial growth (the soil)						
II	spraying	spraying ⇔ between tillering and stem elongation (jointing stage)						
Ш	spraying	g ⇔ si ot ra	multaneous her chemic tions (half	sly with cal pro of the u	application of tection prepa- isual dosage)	\Diamond		

- the crop is more resistant to the flattening, matures earlier;
- improved quality of kernel;
- increased yield from 5% to 10%.

PAPRIKA

	HOW	⇔	WHEN	⇔	300 g/ha	Х	
ı		powder ⇔ seed or spraying ⇔ before initial growth (the soil) or in the phase of 2–5 leaves					
=	spraying ⇔ 3 to 7days upon transplantation						
Ш	spraying	g ⇔ af	ter gatherir	ng		\Diamond	

- more intense color of the culture;
- more convenient for transport and storage;
- increased yield from 5% to 10%.

MEADOW GRASS

	HOW	⇔	WHEN	⇔	300 g/ha	Х	
ı	· ·	powder ⇔ seed or spraying ⇔ before or after initial growth					
II	spraying	g ⇔ af	ter swath			\Diamond	

- increased content of carotene and other salutary substances;
- increased yield from 5% to 20%.

MELON

	HOW	⇔	WHEN	⇔	300 g/ha	X
ı	powder spraying	or	ed fore or afte	er initial	l growth	>
II	spraying	g⇔31	o 7days up	oon trai	nsplantation	•
III	spraying	g ⇔ sir otl ra	multaneous ner chemic tions (half c	sly with cal pro of the u	application of tection prepa- isual dosage)	\Diamond

- increased percentage of sugar;
- matures 7 to 10 days earlier;
- increased yield from 5% to 15%.

ONION

	HOW	⇔	WHEN	⇔	300 g/ha	Х	
ı	powde spraying	or	ed efore or afte	er initia	l growth	>	
II	spraying	spraying ⇔ 30 days after initial growth					
III	spraying	ot	her chemic	cal pro	application of tection prepa- isual dosage)	\Diamond	

- more intense color of the culture;
- more convenient for transport and storage;
- increased yield from 5% to 10%.

PARSLEY

	HOW	⇔	WHEN	⇔	300 g/ha	X	
I	powde spraying	or	ed efore or afte	er initial	growth	>	
П	spraying	spraying ⇔ 30 days after initial growth					
Ш	spraying	ot	her chemi	cal pro	application of tection prepa- sual dosage)	\Diamond	

- increased content of dried substance;
- more convenient for transport and storage;
- increased yield from 5% to 15%.

PEA

	HOW	⇔	WHEN	⇔	300 g/ha	X
I		or ·	owder or su efore or afte	Ū	e into solution I growth	•
II	spraying	g ⇔ siı ot ra	multaneous her chemic tions (half c	sly with cal pro of the u	application of tection prepa- isual dosage)	\Diamond

- more intense color of the culture;
- green plant mass increased for 20%;
- increased percentage of sugar;
- increased yield from 5% to 20%.

PEACH

Ш

,	A C H			Q7.	Donies Gla	i'ie	
	HOW	⇔	WHEN	⇔	300 g/ha	Х	
	spraying ⇔ before blossoming						
	spraying ⇔ after blossoming						

increased percentage of sugar;

- more intense color of the culture;
- bigger quantity of first class fruits;
- more convenient for transport and storage;

spraying \Leftrightarrow before appearance of the color

increased yield from 5% to 15%.

PEAR

	HOW	\Leftrightarrow	WHEN	\Leftrightarrow	300 g/ha	Х	
ı	spraying	g⇔in bu	the phase ids	of spro	uting leaf	*	
II	spraying	spraying ⇔ before blossoming					
III	spraying	g ⇔ be	fore appea	rance	of the color	\Diamond	

- increased percentage of sugar;
- more intense color of the culture:
- bigger quantity of first class fruits;
- more convenient for transport and storage;
- increased yield from 5% to 15%.

PLUM

	HOW	\Leftrightarrow	WHEN	⇔	300 g/ha	X
ı	spraying	aying ⇔ in the phase of sprouting leaf buds				
Ш	spraying	g ⇔ be	fore bloss	oming		*
Ш	spraying	g ⇔ be	fore appea	rance (of the color	\Diamond

- increased content of dried substance;
- increased percentage of sugar;
- more intense color of the culture;
- bigger quantity of first class fruits;
- more convenient for transport and storage;
- increased yield from 5% to 15%.

POTATO

	HOW	⇔	WHEN	⇔	300 g/ha	Х		
ı		powder ⇔ seed (or submerge into solution) or spraying ⇔ before or after initial growth						
II	spraying ⇔ before blossoming							
III	spraying	g ⇔ sir otl ra	nultaneous ner chemic tions (half c	sly with cal prot of the u	application of tection prepa- sual dosage)	\Diamond		

- more convenient for transport and storage;
- increased yield from 5% to 15%.

RADISH

		HOW	⇔	WHEN	⇔	300 g/ha	X
	I	powder spraying	or	ed efore initial	growth		•
	II	spraying	g <code-block> 30</code-block>	days afte	r initial	growth	•
ı	III	spraying	ot	her chemic	cal pro	application of tection prepa- usual dosage)	\Diamond

- more intense color of the culture;
- more convenient for transport and storage:
- increased yield from 5% to 15%.

RASPBERRY

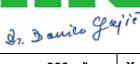
	HOW	⇔	WHEN	⇔	300 g/ha	X
ı	spraying	sp m pla	oring) and inutes the	subm nurser he solu	vegetation (in nerge for 30 y plant before ution prepared ying	•
II	spraying	g ⇔ 3	to 7days u	oon tra	nsplantation	•
III	spraying		efore bloss athering	oming a	and after	\Diamond

- increased percentage of sugar;
- improved mechanical characteristics of the fruit;
- increased yield from 5% to 15%.

RICE

	HOW	⇔	WHEN	⇔	300 g/ha	X
I	powde spraying	or	ed efore or afte	er initial	growth	•
II	spraying	g ⇔ dı	ring blosso	oming		•
III	spraying	g⇔af	ter forming	of ears	3	\Diamond

- matures earlier;
- higher quality yield;
- increased yield from 10% to 40% (China).



RYE

	HOW	⇔	WHEN	⇔	300 g/ha	X	
I		powder ⇔ seed or spraying ⇔ before initial growth (the soil)					
II	spraying ⇔ between tillering and stem elongation (jointing stage)					•	
Ш	spraying	g⇔si oʻ ra	imultaneous ther chemi- ations (half	sly with cal prot of the u	application of tection prepasual dosage)	\Diamond	

- the crop is more resistant to the flattening, matures earlier;
- higher quality yield;
- increased yield from 5% to 15%.

SALAD

	HOW	\Leftrightarrow	WHEN	\Leftrightarrow	300 g/ha	X		
ı	'	powder ⇔ seed or spraying ⇔ before initial growth (the soil) or in the phase of 2–3 leaves						
II	spraying	spraying ⇔ 3 to 7days upon transplantation						
III	spraying	praying \Leftrightarrow simultaneously with application of other chemical protection preparations (half of the usual dosage)						

- increased content of dried substance:
- increased percentage of sugar;
- increased yield from 5% to 10%.

SAVOY

	HOW	\Leftrightarrow	WHEN	⇔	300 g/ha	X	
I		powder ⇔ seed or spraying ⇔ before initial growth (the soil) or in the phase of 2–3 leaves					
II	spraying	spraying ⇔ 3 to 7days upon transplantation					
Ш	spraying	spraying \Leftrightarrow simultaneously with application of other chemical protection preparations (half of the usual dosage)					

increased yield from 5% to 10%.

SOUR SHERRY

	HOW	\Leftrightarrow	WHEN	\Leftrightarrow	300 g/ha	х
I	spraying	g ⇔ be	fore bloss	oming		•
II	spraying	g ⇔ af	ter blosson	ning		•
Ш	spraying	g ⇔ be	fore appea	rance (of the color	\Diamond

- increased percentage of sugar;
- more intense color of the culture;
- bigger quantity of first class fruits
- more convenient for transport and storage;
- increased yield from 5% to 15%

SOYBEAN

	HOW	⇔	WHEN	⇔	30 g/ha	X
I	powder spraying	or a⇔b		growth of 2–6	(the soil) or leaves	•
II	spraying	g ⇔ 1	0 days befo	re blos	soming	•
Ш	spraying	g⇔s o ra	imultaneous ther chemi- ations (half	sly with cal pro of the u	application of tection prepa- isual dosage)	\triangleleft

- higher quality yield (increased content of oil, increased total yield of raw oil and raw proteins);
- increased yield from 5% to 20%.

SPINACH

	HOW	\Leftrightarrow	WHEN	⇔	30 g/ha	Х
ı	powder spraying	or a⇔b		growth of 2–3	(the soil) or leaves	•
II	spraying	g ⇔ 3	to 7days u	pon tra	nsplantation	•
Ш	spraying	g⇔s c r	imultaneou ther chemi ations (half	sly with cal pro of the u	application of tection prepa- usual dosage)	\Diamond

- increased content of dried substance;
- increased yield from 5% to 10%.

STRAWBERRY

	HOW	⇔	WHEN	⇔	300 g/ha	X
ı	spraying	sr m la	oring) and inutes the	subm nurser he solu	vegetation (in lerge for 30 y plant before ition prepared ying	•
II	spraying	g ⇔ 3	to 7days u	oon trai	nsplantation	>
Ш	spraying	g⇔ be	efore bloss	oming a	after gathering	\Diamond

- increased percentage of sugar;
- improved mechanical characteristics of fruit;
- increased yield from 5% to 15%.

STRING BEAN

	HOW	⇔	WHEN	⇔	300 g/ha	X
I	powde spraying	or	ed efore or afte	er initial	growth	*
II	spraying	g ⇔ sii ot ra	multaneous her chemi tions (half	sly with cal prot of the u	application of ection prepa- sual dosage)	\Diamond

- more intense color of the culture;
- green plant mass increased for 20%;
- increased percentage of sugar;
- increased yield from 5% to 20%

SUGAR BEET

	HOW	⇔	WHEN	\Leftrightarrow	300 – 1.500 g/ha	X
I		or	eed (300 in the ph	_	a) of 6 to 12 leaves)	•
II	sprayin	g ⇔ a	after "forr	ming	rows"	•

- -decreased "blue number"
- increases digestion for 1% to 2% (cca 500kg/ha of sugar)
- increased yield of polarized sugar;
- increased yield from 5% to 10%.

SUNFLOWER

	ном	⇔	WHEN	⇔	30 g/ha	Х
ı	powder spraying	or a⇔be		growth of 2–4	(the soil) or leaves	•
II	spraying	g ⇔ 10	days befo	re blos	soming	•
Ш	spraying	g ⇔ sir oth rat	multaneous ner chemic tions (half	sly with cal prot of the u	application of tection prepa- sual dosage	\triangleright

- higher quality yield (increased content of oil, increased total yield of raw oil and raw proteins);
- increased yield from 5% to 20%.

TOBACCO

	HOW	⇔	WHEN	⇔	750 g/ha	X
ı		or a⇔in	ed (300 g/l the phase e sprouting	of	age	•
II	spraying	g ⇔ 3 ¹	to 7days up	oon trar	nsplantation	•
Ш	spraying	g ⇔ in	the phase	of 9 – 1	1 leaves	•
IV	spraying	ot	her chemic	cál prot	application of ection prepa- sual dosage)	\Diamond

increased yield from 5% to 20%.

WATERMELON

	HOW	⇔	WHEN	\Leftrightarrow	300 g/ha	Х
ı	powder spraying	or	ed fore or afte	er initial	growth	*
II	spraying	g ⇔ 3 t	to 7days u	oon trar	nsplantation	*
Ш	spraying	ot	her chemi	cal prot	application of tection prepasual dosage)	\Diamond

- increased percentage of sugar;
- matures 7 to 10 days earlier;
- increased yield from 5% to 15%.

SUGAR CANE

Dr. Donies Gajië

Upon request!

Contact distributor in your country for application guide

SWISS CHARD

	HOW	⇔	WHEN	⇔	30 g/ha	X
I	powder spraying	or		growth of 2–3	(the soil) or leaves	•
II	spraying	g ⇔ 3 1	to 7days u	oon trai	nsplantation	•
Ш	spraying	ot	her chemic	cal prot	application of tection prepa- sual dosage)	\triangleright

- Increased content of dried substance;
- Increased yield from 5% to 10%

TOMATO

	HOW	⇔	WHEN	⇔	300 g/ha	X	
ı	powde spraying	or a⇔be		growth of 2–5	(the soil) or leaves	•	
II	spraying	spraying ⇔ 3 to 7days upon transplantation					
Ш	spraying	g ⇔ af	ter gatherir	ng		\Diamond	

- more intense color of the culture;
- more convenient for transport and storage;
- increased yield from 5% to 20%.

WHEAT

	HOW	⇔	WHEN	⇔	300 g/ha	X
I	powder spraying	or	ed efore initial	growth	(the soil)	>
II	spraying	g⇔be st	etween tille em elongat	ring and ion (joi	d nting stage)	•
III	spraying	ot	her chemic	cal prot	application of tection prepa- isual dosage)	\Diamond

- the crop is more resistant to the flattening, matures earlier;
- higher quality yield;
- increased yield from 5% to 15%.

Ltd. Belgrade, Kralja Milutina 26, tel: 381 (11) 268 26 64; 381 (11) 264 21 52, fax: 381 (11) 268 26 64, mob: 381 (64) 147 80 08 D. D. W. http://www.agrostemin.com e-mail: office@agrostemin.com

APPLICATION OF WATER SOLUTION

Preparation:

- The quantity of 1 to 2 liters of water is necessary in order to dissolve 3 glasses (cca 100g) of AGROSTEMIN®;
- In the quantity of cold or hot water (up to 60 $^{\circ}$ C) measured for the preparation of solution, it is necessary to pour the planned quantity of AGROSTEMIN®.
- mix intensively for 5 to 10 minutes (until eventual lumps are dispersed).

Application:

– with sprinkler:

The concentrated solution prepared for treatment of the cultivated area needs to be divided to the total quantity of sprinklers' chargings which is necessary for the complete treatment of the respective cultivated area.

- for preparation / finishing of seed for sowing:
 - Warning: only for farmers with great general experience in application of "wet" technology during preparation / finishing of seed for sowing; provides the best results!

spray equally the respective quantity of seed or, the best would be, if possible, to submerge the seed into concentrated and previously cooled(!) solution;

after 10-20 min. dry the seed up to the point which enables undisturbed sowing;

Advice:

- if there is not enough liquid, please add water and mix thoroughly afterwards;
- wetting should be performed immediately before sowing, more exactly, sowing should be performed before germination process starts;
- in order to prevent kneading of the seed during sowing, it is necessary to consider carefully the kind of seed that is included in wetting process.

SPRAYING OF SEED

Application:

- dust the seed of the culture that doesn't allow or that makes impossible to spray/submerge during preparation / finishing of seed for sowing;
- the seed must be dry before mixing;
- mix until the powder is equally distributed among the seed
- provides the best results:

IMPORTANT!

In order to apply properly and to achieve the complete effect of AGROSTEMIN®, it is important to know the following:

- The application of AGROSTEMIN® should start at the very beginning of the season of the culture that is to be treated (the biggest increase of yield is achieved when there are conditions to apply AGROSTEMIN® at the beginning - already during preparation / finishing of seed for sowing);
- The basic measure (1ha=300g) for dosage of AGROSTEMIN® is the area (size) of the cultivated parcel that is to be treated, more exactly, that requires finishing of seed;

- the total quantity of spraying is given in Table 1 as reminder, indicating cultures that require mandatory repeated spraying and those that recommend it (not mandatory) in order to achieve the maximized increase of yield;
- if the finishing of seed has been performed with AGROSTEMIN®, the first spraying doesn't have to
- in the phases of development where the application of **AGROSTEMIN**[®] is indicated as mandatory (), and where other chemical protection preparations are applied, it is necessary to use the full dosage!
- it is applicable simultaneously with all fertilizers, insecticides, fungicides and other preparations used in agriculture in the form of water suspension (it does not require a separate passage; it can be applied simultaneously with other preparations dissoluble in water);
- it is recommended (♥) that, regardless the culture, the half of the usual dosage of AGROSTEMIN® is applied as well in the phases of development where the culture is treated exclusively with pesticides (the **Table 1** does not give the concrete phase);
- The following rules should be respected during preparation of solution of AGROSTEMIN®:
 - first, dissolve it thoroughly in smaller quantity of water (as per instruction on page 9), only then pour it in the sprinkler (it prevents the formation of lumps, more exactly, the blockage of blast pipe);
- it is advisable to use the unconsumed water solution of **AGROSTEMIN®** in the period of 15 to 30 days; the rest of the quantity of AGROSTEMIN® in powder close firmly and keep in dry place;
- if over dosage occurs, there are no damaging consequences - but its "power" decreases;
- AGROSTEMIN® effects through the soil even in the next season on the newly sowed/planted culture; from the point of view of investment and achievement of its full effect, it is optimal to apply it every season, while its application is mandatory two seasons in a row; after one season break, its prolonged effect extremely regresses and in order to achieve the declared increase of yield, it is necessary to continue with complete application of AGROSTEMIN® (as per the instruction);
- AGROSTEMIN® is completely harmless for humans, animals (including bees) and environment; it does not require special safety measures of hygienic and technical protection;
- AGROSTEMIN® is allowed to be used in certified organic farming;
- AGROSTEMIN® is not a fertilizer, it is not a pesticide, it is not a phytohormon
- AGROSTEMIN® is "the voice" of nature: composed by PLANT SPECIES EXTRACTS (natural origin **NUTRITION** substance)